Calpain-1 is required for hydrogen peroxide-induced myotube atrophy.
نویسندگان
چکیده
Recent reports suggest numerous roles for cysteine proteases in the progression of skeletal muscle atrophy due to disuse or disease. Nonetheless, a specific requirement for these proteases in the progression of skeletal muscle atrophy has not been demonstrated. Therefore, this investigation determined whether calpains or caspase-3 is required for oxidant-induced C2C12 myotube atrophy. We demonstrate that exposure to hydrogen peroxide (25 microM H2O2) induces myotube oxidative damage and atrophy, with no evidence of cell death. Twenty-four hours of exposure to H2O2 significantly reduced both myotube diameter and the abundance of numerous proteins, including myosin (-81%), alpha-actinin (-40%), desmin (-79%), talin (-37%), and troponin I (-80%). Myotube atrophy was also characterized by increased cleavage of the cysteine protease substrate alphaII-spectrin following 4 h and 24 h of H2O2 treatment. This degradation was blocked by administration of the protease inhibitor leupeptin (10 microM). Using small interfering RNA transfection of mature myotubes against the specific proteases calpain-1, calpain-2, and caspase-3, we demonstrated that calpain-1 is required for H2O2-induced myotube atrophy. Collectively, our data provide the first evidence for an absolute requirement for calpain-1 in the development of skeletal muscle myotube atrophy in response to oxidant-induced cellular stress.
منابع مشابه
An Investigation on the Bioavailability of SBR Bioreactor Enzyme Inhibitor Induced with Hydrogen Peroxide
Abstract Background & aim: S-triazine, is one of the most widely used herbicides of estrazines, and S-triazine, contains of atrazine, amtryn and prom ether. S-triazine is one of the most stable herbicides that pollute water resources. This material is used for controlling broad-leaved weeds and corn. The purpose of this study was to determine the bioavailability of SBR bioreactor e...
متن کاملCalpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy.
Prolonged skeletal muscle inactivity results in a rapid decrease in fiber size, primarily due to accelerated proteolysis. Although several proteases are known to contribute to disuse muscle atrophy, the ubiquitin proteasome system is often considered the most important proteolytic system during many conditions that promote muscle wasting. Emerging evidence suggests that calpain and caspase-3 ma...
متن کاملDexamethasone Treatment at the Myoblast Stage Enhanced C2C12 Myocyte Differentiation
Background: Glucocorticoids induce skeletal muscle atrophy in many clinical situations; however, their hypertrophic and pro-differentiation effects on myotubes have rarely been reported. We hypothesized that dexamethasone (DEX) has a dual effect on muscle differentiation, and aimed to develop a new differentiation protocol for C2C12 cell line. Methods: Dose- and time-dependent effect of DEX on ...
متن کاملAcylated and unacylated ghrelin inhibit atrophy in myotubes co-cultured with colon carcinoma cells
Cancer cachexia is a result of increased protein degradation and decreased protein synthesis. The multifunctional circulating hormone ghrelin promotes synthesis and inhibits degradation of muscle protein, but its mechanism of action is not fully understood. Here, we investigated whether co-culturing C2C12 myotubes with CT26 colon carcinoma cells induces myotube atrophy, and whether acylated ghr...
متن کاملSurvival of motor neuron protein over-expression prevents calpain-mediated cleavage and activation of procaspase-3 in differentiated human SH-SY5Y cells.
Spinal muscular atrophy (SMA), a neurodegenerative disorder primarily affecting motor neurons, is the most common genetic cause of infant death. This incurable disease is caused by the absence of a functional SMN1 gene and a reduction in full length survival of motor neuron (SMN) protein. In this study, a neuroprotective function of SMN was investigated in differentiated human SH-SY5Y cells usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 296 2 شماره
صفحات -
تاریخ انتشار 2009